Imputing Missing Estrogen Receptor Status from Population-based SEER Cancer Registries

Nadia Howlader Mathematical Statistician, MS Surveillance Research Program, NCI

NAACCR Cancer Surveillance Webinar Series

May 20, 2016

Overview

- Part I
 - ➤ Background & motivation
 - ➤ Data source & ER status missing patterns
 - > Imputation method
 - > Results
 - ➤ Discussions
 - ➤ Brief description of imputation of missing HER2 status
- Part II
 - ➤ Demonstrate how to use imputed dataset in SEER*Stat

INCHONAL CHICER MUTTUTE

Background

- Epidemiologic studies examining trends of tumor subtypes are important, e.g. estrogen receptor (ER), progesterone receptor (PR) status
- Tumor markers are prone to missing data. Why?
- Therefore, it is important to understand extent of missing information and impact of missing tumor markers when assessing trends

INCHORAL CARCES BESTIANT

.

Objective

- Describe missing pattern with ER status (main variable of interest) and explore other related variables
- Impute missing ER status
- Present breast cancer incidence trends by original (ignoring missing ER) and imputed ER status

INTEGRAL CHICES BETTEVE

Δ

Study Cohort

- SEER-13 cancer registries, representing ~14% of total US population
- Female breast cancer patients diagnosed between 1992-2007 (malignant cases only)
- N = 401,741

MANAGEMAN CONTRACT DESTRUCTION

Define ER Status for Analysis

- Positive ER Status
- positive + borderline
- Negative ER Status
- negative
- Missing ER Status
- > test not done
- > test done, but results are not interpretable
- unknown

SEER Breast Cancer Missing Data*

Variables	% Missing
ER status	17%
PR status	19%
Tumor size	8%
Histology	2%
Node positive status	14%
Grade	14%
Presence of metastasis	4%

*Age at diagnosis and county level poverty were minimally missing (< 0.5% of cases); Registry, year of diagnosis, Hispanic ethnicity had no missing information.

MARGINAL CHICKE RETITIVIT

How Does Missing ER Status Vary over Time by Variables of Interest?

- Age at diagnosis
- Race
- Ethnicity
- Stage
- Registry
- Tumor size
- Socioeconomic status

MARCHAL CHICAR RETIRAT

Multiple Imputation of ER Status

- Imputed missing ER status under MAR assumption
- Basic idea behind imputation:
 - Fit regression model among <u>observed</u> cases, use to predict response for individuals with missing cases; add a random error term to account for uncertainty
- Specially, imputation of missing ER status, we used <u>sequential</u> regression multiple imputation (SRMI)
 - Impute each variable one at a time
 - Tailor the imputation to that specific variable (e.g., binary, continuous)

INCHONAL CANCER BUTTLUTE

Multiple Imputation of ER Status (Cont'd)

 Variables: age (continuous), race (categorical with 3 levels), ER status (binary)

Id	Age	Race	ER
1	65	W	
2	40		0
3	77	W	1
4	80	В	
5		W	

Steps in SRMI:

- Do a single imputation to fill in missing values for all 3 variables
- Using cases with observed age, fit normal regression model for age ~ race + ER; predict missing values of age

MADOWAL CONCER MATTEUT

15

Multiple Imputation of ER Status (Cont'd)

- Using cases with observed race, fit multinomial logistic regression model for race ~ age + ER; predict missing values of race
- Using cases with observed ER, fit logistic regression model for ER ~ age + race; predict missing values of ER
- Id
 Age
 Race
 ER

 1
 65
 W
 .

 2
 40
 .
 0

 3
 77
 W
 1

 4
 80
 B
 .

 5
 .
 W

- 5. Iterate steps 2 through 4
- 6. Repeat step 5 to get multiple imputations

INCHONAL CONCRETENTIVE

Multiple Imputation of ER Status (Cont'd)

- Imputation was repeated 5 times to account for imputation uncertainty
- Each imputed dataset was analyzed separately to obtain an estimate

ld	Age	Race	ER
1	65	W	1
2	40	В	0
3	77	W	1
4	80	В	0
5	79	W	0

 <u>Rubin's rule</u> is used for getting a final estimate combining across each dataset

Rubin's rule to combine estimates from imputed datasets

INTO INC. CHICAR BATTIVI

Rubin's Rule

Overall Estimate:

$$\overline{Q}_{j} = \frac{1}{m} \sum_{j=1}^{m} \hat{Q}_{j}$$
Number of imputed datasets (m = 5)

Overall Variance: within and between-imputation

$$T = \bar{U} + \left(1 + \frac{1}{m}\right) B$$
 Between imputation variance

INCHONAL CONCRET METHOTE

Multiple Imputation* of ER Status (Cont'd)

Demographic Variables	Clinical Variables
Age at diagnosis	Node positive status
Year of diagnosis	Metastasis at diagnosis
Registry	PR Status
Race	Histology
Ethnicity	Tumor Grade
County level poverty	Tumor Size

^{*} Iveware (v 0.2) in SAS used for multiple imputation

MANONAL CANCER DETITATION

19

How Do Breast Cancer Incidence Trends Compare Before and After the Imputation?

Discussions

- ER status in SEER becoming more complete over time (25% in 1992 to 7% in 2007)
- Imputation method appears to be a reasonable approach to correct for missing ER status and to present trends more accurately
- Important to address missing ER status as we saw trends differ based on original vs imputed ER status

INTERNAL CHICAR REPORT

25

Discussions (Cont'd)

- Key assumption behind imputation is ER status is missing at random (MAR)
- What if ER status missingness were not at random (MNAR)? (Rebecca's talk)

INCHONAL CONCRE METHOD

How to Access the Imputed Dataset:

 Imputed dataset available through SEER*Stat for SEER-13 registries for 1992-2012 year of diagnosis

Contact:

Nadia Howlader

Email: howladern@mail.nih.gov

INCHONAL CANCER BETTIVE

27

American Journal of EPIDEMIOLOGY

Use of Imputed Population-based Cancer Registry Data as a Method of Accounting for Missing Information: Application to Estrogen Receptor Status for Breast Cancer

Nadia Howlader*, Anne-Michelle Noone, Mandi Yu and Kathleen A. Cronin

INCHONAL CHICER MUTITUTI

Data Collection for HER2 Status

- Beginning with 2010 breast cancer cases
 - All registries from the SEER program for the first time collected HER2 receptor status
- ER and PR status were collected by SEER registries since the beginning of 1990
- The major molecular subtypes of breast cancer are approximated by the joint expression of these 3 tumor markers
 - With the availability of HER2/ER/PR, demographic & clinical assessment of major breast cancer subtypes for ~28% of US female population

MANGRAL CHICER BUTTIVIE

Breast Cancer Molecular Subtypes

- Beginning with 2011 breast cancer cases, most US cancer registries started collecting HER2 status routinely
- Therefore, we expand the analysis to include data from 42 states plus the District of Columbia
 - Covering ~84% of the US female population

HARDINAL CHICER RETITUTE

Breast Cancer Molecular Subtypes (Cont'd)

- To report breast cancer subtype by age group, race/ethnicity, area-based poverty status, and state
- However, one major challenge in reporting subtypes was that HER2 status was missing
 - ~10% of all breast cancer cases

INCHORAL CONCRE BUTTIVI

33

JNCI Journal of the National Cancer Institute

Annual Report to the Nation on the Status of Cancer, 1975-2011, Featuring Incidence of Breast Cancer Subtypes by Race/Ethnicity, Poverty, and State

Betsy A. Kohler, Recinda L. Sherman, Nadia Howlader, Ahmedin Jemal, A. Blythe Ryerson, Kevin A. Henry, Francis P. Boscoe, Kathleen A. Cronin, Andrew Lake, Anne-Michelle Noone, S. Jane Henley, Christie R. Eheman, Robert N. Anderson and Lynne Penberthy

INTEGRAL CHICER BETTEVTI

How to Access Imputed HER2 Status:

- Available in SEER*Stat on request:
- CINA file:

Recinda Sherman: rsherman@naaccr.org

SEER file:

Nadia Howlader: howladern@mail.nih.gov

MANGRAL CANCER MATTEUT

35

Ongoing Work

- Imputed HER2 status is available for <u>one</u> year only (2011 breast cancer cases)
- Updating HER2 status for more recent years (2010-2013)
- Performing sensitivity analyses under MNAR assumption (using methods developed by Rebecca)

INCHONAL CHICER BUTTOTE

